Distributed Wireless Multi-sensor Technologies

DOE Contract: DE-FC36-04GO14001 CPS #14226

Daniel Sexton
General Electric Global Research

Presentation Overview

- Project Overview/Summary
- Technical Metrics and Barriers
- Progress to date
- Future Plans
- Commercialization

Goals/Challenges/Benefits

CPS #14226

Goal: Wireless multi-sensors that can be deployed in an industrial environment to facilitate better maintenance practices for improved energy performance.

Challenge: Low-life cycle cost and robust wireless communications. Customer acceptance.

Benefits: One potential use: more efficient operation of electric motors through early identification of potential failures resulting in an estimated savings of 0.1 Quads of Electricity by 2020.

FY04/05 Activities: Collect customer requirements, using various industrial sites, characterize the RF environment, build statistical models to verify system performance, retire high risk technology items and perform system design.

Participants:

Sensicast Systems,
Needham MA.
Rensselaer Polytechnic
Institute, Troy NY.
Chevron Texaco, Houston
Tx.

Distributed Wireless Multi-sensor Technologies CPS # 14226

Barrier-Pathway Approach

Barriers

- Noisy unreliable channel
- Short battery life
- Life cycle costs
- Network Security
- Gateways

Pathways

- Characterize the channel, qualify a design approach.
- Low duty cycle operation, energy harvesting.
- Minimize device cost, maximize life and reduce installation expense
- Data Encryption
- Standard Interfaces

Critical Metrics

- Accurate early prediction of asset faults before they occur
- 5 year average unattended life
- Significant reduction in installed costs.

Benefits (est.)	2020
Energy Savings	122 trillion Btu
Cost Savings	TBD
Carbon Reduction	2.13 MMTCe

Project Overview

Low-Cost Wireless Multi-Measurand Sensing Program

Wireless

Network

Wireless

Access

Point

Router

Advantages

- · Communication reliability
- . Long life (minimum 3 years)
- Robust package (-40°C-70°C operation)
- No FCC license required (ISM band)
- · Multiple sensor options in single package
- · Enclosure options suitable for outdoor applications

Benefits of the Technology

- · Estimation of remaining life
- · Indicator of operational efficiency
- · Improves asset maintenance strategies

Output/ Operator Interface

Program Deliverables · Standards-based

- wireless network
- Low cost wireless sensors for asset monitoring

Real-Time Data

Condition Forecaster™ Analysis Software

- · Point, site, or fleet/enterprise
- Real-time data with trending
- · Repair history/cost

Gateway

to Plant

Network

- Anomaly detection and reporting
- Spares inventory tracking.

GRC External Team Members

- 50% cost share commitment
- Sensor Commercialization

- MAC and Networking Software
- Network configuration tools
- 50% cost share commitment

- Customer requirements
- Onsite testing and qualification

- Condition ForcasterTM
- Commercialization through Service Business

- Advanced motor condition modeling
- Sensor to condition identification

Progress to Date

Customer Requirements

- Customer Interviews
- Customer Surveys

Channel Capability Analysis

- Channel Characterization
- Simulation Models
- Physical Channel model

Technology Selection

- Radio Technology
 Experimental Data

 Vendor Selection
- Networking Technology Partner Selection
- Processor Technology
 Device Selection
- Energy SourceStudy optionsExperimental data

Voice of the Customer

- Conducting one on one customer interviews with different industries
- Developed Web based Conjoint survey.
- Distributed over 50 paper surveys to various industries
- Data collection ongoing, too early for requirements analysis.

Online Conjoint Survey

Medium Voltage Motors: http://www.sawsft.com/~mvm/MVM/MVMlogn.htm
Low Voltage Motors: http://www.sawsft.com/~mvm/LVM/LVMlogn.htm

ChevronTexaco

- ✓ Large Population (85%) under 200HP
- ✓ Bearings most common failure on Low voltage
- ✓ Proper Packaging is a must have
- ✓ Many outdoor applications
- ✓ Reasonable system costs a must

- ✓ Mobility of sensing packing & platform highly desirable
- ✓ Additional assets/application focus very desirable (Motor-Pump)
- ✓ No packaging restrictions
- ✓ Comm readily accessible, 100Ft-100ft

- ✓ Motor Energy costs small % of total
- ✓95% motors under 200HP
- ✓ Un spared (other) applications most desirable
- ✓ Low sensor cost
- ✓ Packaging a must, outdoors, 100m, 1/day transmission,

Common Customer Inputs

Reasonable Cost of Implementation
Adequate Set of "Predictive" Sensed Functions
Ease of Use & Reliability of System
Maintenance/Engineering Decision Support
Network Security (Gateway in particular)
Ability to integrate with Suite of Existing Software & assets
Scalability & Extensibility of wireless network
Proper Packaging

- ✓ Network Security
- ✓ Adequate sensing functions
- ✓ Reasonable cost
- ✓Effectiveness of Network
- ✓ Ability to integrate w/ existing software/assets

- ✓ Adequate sensing functions
- ✓ Motor reliability with life prediction essential
- ✓Immediate motor replacement advise

- ✓ Adequate "Predictive" sensing functions
- ✓ Reasonable cost
- ✓ Ease of installation
- ✓ Ability to integrate with existing software/assets

System Mapping of Technology Needs

Sensor Nodes

- Mesh Routing Nodes
- Path Redundancy
- Frequency Redundancy

- Robust Packaging
- Low Cost design
- •Low Power Circuit Design
- Energy Harvesting
- Battery Life
- Low Duty Cycle
- Unattended operation

- Channel Capability Analysis
- Quantify Multipath
- Quantify Interference
- Establish design margins

- Standard protocols
- Standard application interfaces
- Secure Access
- Network
 Maintenance

2.4 GHz Channel Complex Impulse Response

Raptor RCVR

2.4 GHz Channel Coherence Time and Fading Statistics

802.15.4 Matlab Simulink Model

802.15.4 PHY model was built and simulated with Matlab and Simulink

Physical Channel Simulator

Shielded Enclosure #1 RF Cables - Attenuator 40 dBm @ 2.45 GHz (About 40 dB) MCL* 0 dBm FL-701 Telonic TTF ZFRSC Sensor Transmitter Supply 0-30 dB Japan Radio Corp. 400 MHz Rayleigh Fader Modulator HP8665 Signal Delay Control and Data Generator Line (2.00 GHz) Acquisition ZN2PD ZFRSC Equipment -42 MCL* ZFM-15 Sensor Receiver K&L 6FV4D-2.45 G 2450/U80 -80 to -120 RF Cables -(About 20-40 dB) RG-55B/U 0 - 60 dB Sensor Receiver Shielded Enclosure #2 R. L. Frey **Test System**

Testing Capabilities

- Radio Qualification Studies
- Receiver Sensitivity
- Transmitter properties
- Straight multipath
- Multipath with Rayleigh fading
- Interference studies

Coexistence studies

2/13/2004

Radio Testing

- Prototyped radio design with +15dBm transmitter.
- Built multiple radio nodes for onsite radio performance data collection.
- Testing in representative Industrial Environments

GE Onsite test bed

Radio Performance Analysis

June 21st 2004

Channel Capability Analysis Flow

Six Sigma Approach to Robust Design

Network Layer

Sensimesh is self-configuring

Unique Features:

- •Two Way Communications
- Over the air programming
- Channel Agile
- Redundant paths
- Network Gateway

- Power efficient routing nodes
- Network management software
- Simple device configuration

Any wired network

Sensor Energy Source Study

- Battery technology qualification and reliability study underway
- Lab experiments with prototype harvesting circuit underway
- GE Energy Services database data reduction for 2-pole, 60Hz motors (estimates for available energy from vibrations)
- Modeling of piezoelectric beam generators

Experimental Setup

Available Motor Vibration Data

- GE Energy Services Database,
 Customer Databases
- Data for 31 different
 AC motors extracted

- •824 data points extracted for those motors
- Some motors monitored once, 2 monitored on ~40 dates
- Motors usually have at least 2 horizontal and 2 vertical measurements
- Limiting data to 2-pole machines
- •Analysis of fleet data in process, determining available energy level versus percentage of motors covered.

Condition ForecasterTM

Technology elements are available to predict remaining motor life, given:

- Continuous sensor data,
- Historical repair data with mechanism in place to collect comprehensive data,
- Expert knowledge of root cause, and
- Data fusion between historical and real time sensor data to augment reliability statistics.

Data Fusion with existing components

- Protective relays can provide:
- Current measurements/waveforms
- 2. Voltage measurements/waveforms
- 3. Power quality analysis

Motor Reliability Analysis Output

The Condition Forecaster analysis outputs:

- Most likely component to experience next failure and the associated probability,
- Time until failure (in days) bounded by a statistical confidence interval, and
- Current sensory data.

Project Activity Summary

Future Plans - Next 12 months

Voice of the Customer

Complete Customer conjoint surveys/analyze data

Capability Analysis

- Collect Channel/Radio Characteristics multiple field sites
- Sample motor vibration data multiple customer sites
- Battery life testing and qualification testing

Onsite Technology Qualification

- Quantify Energy Harvesting capability
- Refine System design based on data collected
- Port Sensicast MAC and network software to CC2420
- Build alpha units and deploy at customer sites
- Build Alpha Gateway for interface to Plant Historian and Condition ForecasterTM
- Begin integration with Condition Forecaster™

Future Optimization

Initiate motor physical modeling improvements at RPI

Commercialization

- GE Infrastructure engaged, commercial license agreement with Sensicast under negotiation.
- Sensicast contributing member to ZigBee standards being influenced.
- GE Kaye Instruments studying packaging/Production options based on ValProbe product (Class I Div II package)
- GE Energy (Bently Nevada and GE Energy Services) to incorporate Condition Forecaster[™] into System One[™] market to industrial customer base. Sales and marketing teams engaged.
- Wireless Technology being leveraged by other GE Businesses Security (Interlogix), Building Automation (GE Lighting), Utilities (GE Multilin).

This project is a positive driver for making wireless sensors a reality

